Part:BBa_K1189020:Experience
Light ferritin subunit fused to an E coil
BBa_K1189020 is the light subunit of human ferritin fused to a linker E coil (BBa_K1189011), under control of a lactose inducible promoter (BBa_R0010) and a strong RBS (BBa_B0034). Twenty-four of these light subunits will assemble to form a protein shelled, iron sequestering nanoparticle (Chasteen et al., 1999) (see Figure 1). Ferritin is ubiquitous across prokaryotic and eukaryotic systems and is used to buffer intracellular iron by crystallizing it in its core using (Chasteen et al., 1999). The light ferritin purportedly contributes to nucleation to initiate iron core formation in ferritin molecules (Chasteen et al., 1999).. These nanoparticles are robust, remain stable at extreme pHs, withstand temperature variations, and can be used as a protein scaffold (Kim et al., 2011)
Design features
BBa_K1189020 has an N-terminal fusion to an E coil connected to ferritin by a GS linker (Figure 2).
The coil system is of utility to other iGEM teams because they can express K coils on their own proteins of interest, and bind them to the complementary E coil on ferritin. Such a coiled-coil linker system reduces potential for large protein fusions to harm ferritin formation, allowing users to build intricate nanoparticle devices with myriad proteins. See Figures 3 application examples.
This light ferritin chain was inspired by human light ferritin (P02792 [UniParc]), codon optimized for E. coli K12, and commercially synthesized as shown in Figure 2. The iGEM Calgary team switched this construct into pSB1C3.
Results
The 2013 iGEM Calgary team did not make use of this sequence per se. Rather, they replicated this sequence using PCR, and integrated it into other constructs for their final system (BBa_K1189018, BBa_K1189021, and BBa_K1189037). Please see these respective pages for characterization data of these respective systems.
References
User reviews
UNIQf91aed8844c9a0ce-partinfo-00000001-QINU UNIQf91aed8844c9a0ce-partinfo-00000002-QINU